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I

For a depth dependent reference speed. c(z), we can no longer invert

the integral equation exactly. However. we can write down an asymptotic

high frequency approximation for the kernel of the integral equation and an

asymptotic solution for the perturbation. The computer implementation of

this result is designed along the same lines as the code for the constant

background case. In tests of processing time, we find that, at worst, the

total processing time for this algorithm with depth dependent background

soundspeed is about the same as for a comparably programed k-f algorithm

with constant background. By worst we mean that we choose the aspect ratio

-- the number of traces divided by the number of points per trace -- to be

optimal for the k-f algorithm. We present examples which demonstrate the

method implemented as a migration technique and compare with the application

of alternative migration algorithms. The examples we chose were ones in

which the objective is to image the flanks of a salt dome.
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purpose of this paper is to describe an extension of the

aultidinensionl Born inversion technique (Cohen and Bleistein, 1979a) for

acoustic waves. In that earlier work, a perturbation in reference

soundspeed was determined by assuming that the reference or background speed

was constant. In this extension, we allow the reference speed to be a

function of the depth variable, z, but still require that it be independent

of the transverse variables. The output of this method is a high frequency

bandlimited reflectivity function of the subsurface. The reflectivity

function is an array of bandlimited singular functions scaled by the normal

reflection strength. Each singular function is a Dirac delta function of a

scalar argument which measures distance normal to a reflecting interface.

Thus, the reflectivity function is an indicator map of subsurface reflectors

which is equivalent to the map produced by migration. In addition to the

assumption of small perturbation, the method requrios the assumption that

the reflection data reside In the high frequency regime, in a well-defined

sense

The method is based on the derivation of an integral equation for the

perturbation in soundapeed from a known reference speed. Thon the reference

speed is constant, the intoeral equation admits an analytic solution as a

multifold Integral of the reflection data. Further high frequency

asymptotic analysis simplifies this Integral considerably and leads to an

extremely efficient numerical algorithm for computing the relfeetivity

function. Is a paper by 31.istein, Cohen and laSis (1P], the development

of a amputem ode to implement this constant roferoene speed solution is

described.
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output of inversion operator applied to U8(_k,Oe). sq. (16).

v(z.z) total soundspoed. Eq. (3).

S- ( ,qO) ouroe/roeiver looation on upper surface.
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G(Z'Z) soundspeed perturbation. Eq. (3).

m-Preflectivity function. Eq. (22).

cGz reference soundspeed. Eq. (3).

4 minimum(-) and maximum(+ frequencies of the data In Ix.

P S a Pswf F(z I j s) dz'. Eq. (9) .

k-(kl5ka) transverse Fourier transfor, variable.

k - Ikil + 4k:

- Us transverse Fourier transfor, variable.

4. 1

-(a..,aa) transverse Fourier transform variable.

j usg' p'W~O~IL vertical wave namber defined locally in z by dispersion I
relation, Eq. (9).

frequency variable

p ray parameter. Eq. (25).

traveltime of Inversion operator. hq. (25).

u(ZOyVZSN) total field in frequency domain. Eq. (2).

U(x.yzsot) total field In time domain.

u1(z.h.38) incident field in frequency domains response to Point source

with soundspood @Wa. Eq. (4).

51(zE.,t)8 a, In the time domain.

US(Z.z.28) scattered field in the frequesey domains respons to the

perturbation, a. Eq. (5).

VU'zYugt) US In the thne d&main.

8011016u) transverse Fogrier transform of u,(J.@a.). 1q. (11).



1. IwiTmicrnII

The purpose of this paper is to describe an extension of the Born

inversion technique [Cohen and Bleistein, 1979a). In that paper, a method

was developed to determine the perturbation in soundspeed from a known

reference speed. A closed form solution was derived when the reference

speed was taken to be constant. In this extension, we allow the reference

speed to be a function of the depth variable z, but we require that it be

independent of the transverse variables (laterally homogeneous). The

perturbation is allowed to be a function of all three spatial variables when

a planar survey on the upper surface is avallablet it is allowed to be a

function of one transverse variable and depth when only a line of surface

data is available. We shall refer to this latter case of three dimensional

propagation over an earth with two dimensional variations as the two and-

one-half dimensional eases we shall refer to the former as the three

dimensional case. In both cases, the surface observations we use are

backsecattered (CP stacked) time logs.

Lot us denote the soundspeed by v(z.y.z). We introduce the reference

speed, c, and a perturbation, a. in the form

S 1-- = -- (1 +a 1

s a
v a

The main features of the method are as follows:

(i) The method starts from the wave equation and a nonlinear integral

equation for e(zys) is derived. The equation is nonlinear



because it contains the product of the perturbation and the

unknown interior wave field.

(i) Linearization, under the assumption that a is 'small,' leads to an

integral equation for a in which the data are the ensemble of

backscatter (coincident source-receiver) observations on the upper

surface. The kernel of the integral equation is the square of a

Green's function for the unperturbed problem with reference speed

c(z).

(iii) For constant c, the integral equation admits a closed form

solution for a as a multi-fold integral of the observed data

[Cohen and Bleistein, 19791. Asymptotic analysis (Ilaistein.

Cohen and Bagin, 1984t referred to as BCR, below] reduces the

number of integrations which must be performed by comnpter so that

the processing times are competitive with, or better than, times

for existing migration codes. (See Gray, (19841.) For depth-

dependent c, the integral equation admits an approximate

(asymptotic) solution, again as a multi-fold integral of the data.

As with the case of constant c, asymptotic analysis greatly

simplifies the computer Implementation.

(iv) The computer implementation takes account of the fact that real

seismic data is bandlimited in frequency. The method also employs

constraints which account for causality and avoid aliasinS in the

transverse.

The output of this method is a high frequency bandlimited reflectivity

"--



function of the subsurf ace. The reflectivity function is as array of

baudlinited singular fuctions scaled by the normal incidence reflection

strength. Rack singular function is a Dirac delta function of a scalar

argument which measures distance normal to a reflecting interfaces see Fig.

1.

Un characterizing this data as high frequency data we =ean that the

dimensionless parameter

X 4,fL/c

should be large. la this equation, f is the minimma frequency in Ia, a is

the local soundapeed and L is a typical length scale. There is a& ezt--a

factor of 2 in this equationt due to the two-way travel time of interest in

inverse problemss alternatively. c/2 my be viewed as the Onigration

velocity* for a problem where sources are set off at eack reflector at tine

zero. The length scalso of interest are the range from the upper surface to

the reflecting surface, the principal radii of curvature of the reflector or

the distance between reflectors. for the first two of these. a lower limit

of 50ft Is reasonable. Let us, consider a lower limit of frequency of 6 Es

and a souedaeed of 2000 a/sec. For this choice. ).-6x is muc larger than

neesseary for high frequency asmtotic methods to be valid. In fact, a

value of threse (or w) will usually auffie. Thus, even, an increase of

velocity by a factor of S or a deerease in length Seale by the same mut

would leave & large smugh for symtotic methods to apply. Ufetuately.

smll offset seismic date do sot usually suport; resolution of layes whea



separation is such as to make X less than three, whether or not we exploit

high frequency techniques to invert the data.

The method has been checked on synthetic data in the two and-one-half

dimensional case. The output of this inversion algorithm Is a depth profile

equivalent to one produced by a depth migration. The added feature of

inversion is that the amplitude of the output provides an estimate of the

velocity increments across the interfaces. The accuracy of this estimate

can be no better than the accuracy of the input data as relative true

amplitude data. However, in BCH, we show theoretically, using asymptotic

analysis. that for true amplitude data the output provides a more accurate

estimate of reflection strength at interfaces than its basis in perturbation

theory would suggest. In the absence of true amplitudes, the output is

fully equivalent to the output of a migration algorithm. In BCH, we discuss

the relationship between inversion of both k-f migration [Stolt, 1978] and

Kirchhoff migration [Schneider, 1978]. In order to distinguish the case in

which parameter estimation is possible from the case in which it is not, we

shall refer to the former as a seismic inversion and the latter as a

structural inversion. Thus, from our point of view, migration is a

structural inversion technique.

For a depth dependent reference speed, c(z), we cannot invert the

linearized integral equation exactly for a. We cannot even write down an

exact analytical expression for the kernel of the integral equation, which

is proportional to the square of a Green's function for the wave operator

with soundspeed c(z). However, we can write down an asymptotic (high

frequency) approximation for this Green's function and an asymptotic

-4-



inversion of the integral equation for a(x,yz). Indeed, fundamental to

this extension is early exploitation of asymptotics on the basis of high

frequency in full anticipation of obtaining a solution only in the high

frequency regime and only for the bandlisited reflectivity function. (This

is much in the spirit of Clayton and Stolt [1981]). When the data is not

relative true amplitude data, we lose only the estimate of reflection

strength and this seismic inversion method remains a structural inversion

method, now in the context of a depth dependent background soundspeed.

The computer implementation of this result is designed along the same

general lines as the constant reference speed algorithm described in BCH.

To obtain the output at a subsurface point, it is necessary to take the

temporal Fourier transform of the range normalized data, multiply by a

filter deduced by the theory, invert the transform, evaluate each trace at a

traveltime deduced from the theory with an appropriate amplitude scale, and

integrate over a set of traces. In the constant reference speed case, the

travoltime and amplitude scales of the last integration are explicit

functions of the integration point and the output point. In the €(z)

reference speed case, these latter functions are replaced by the geometrical

optics traveltime and an amplitude on the ray connecting the subsurface

output point and the source/receiver point in the context of the depth

dependent reference profile. These functions are given implicitly in toms

of a (ray) parameter which remains constant on a ray and is determined from

the equation of the ray conectinS the two points. We arbitrarily

characterize the reference speed in this implementation as being pieevise

linear and continuous, connecting prescribed values of soundapeed at

prescribed depths in the subsurface. (For structural inversion, we could

-9



just as easily prescribe the reference velocity to be piecewise constant.

For seismic inversion, the piecewise constant background would required a

more complicated amplitude in the inversion operator.) We compute the ray

parameter and the necessary functions in advance and retain then in tables

to be called as needed for the final integration of the algorithm.

Because these tables need only be computed once for each output depth

(i.e., for each transverse offset separating output point and

source/receiver location), the computing time for this part of the

processing becomes a progressively smaller fraction of the total processing

time as the aspect ratio - the number of traces divided by the number of

output points - becomes larger. In tests of processing time we find that,

at worst, the total processing time for this algorithm with depth dependent

background velocity is about the same as for a comparably programed k-f

algorithm with constant background velocity. By worst, we mean that we

choose both the number of traces and the number of points per trace to be a

power of two aud we choose the aspect ratio - number of traces divided by

number of points per trace - to be optimal for the k-f algorithm.

Because of its implementation, described above, the method bears close

relationship to one described by Carter and Frazer [19841. The ch.ef

difference between them, other than algorithmic details, are: (1) Carter

and Fraser's methods allows for transverse variations in c while ours does

nots (2) our method allows for processing of true-amplitude data for

reflection strength and hence velocity while Carter and Frazer's does not.

We present synthetic date examples which demonstrate the method



implemented as a structural inversion (mitration) technique. For the

simplest example of a single steeply tilted reflector, we compare this

method with output of a k-f algorithm applied to a time-stretched version of

the same data and to a Kirchhoff migration. We also present two eamples in

which the objective is to image the flanks of a salt dome intruding into an

otherwise horizontally stratified medium. The advantages of the method of

this type of application are evident from the output.

-- o



2. DE[ATION OF i UIM AL 3MTION M AUPU

We shall derive an integral equation for a. We assume that the time-

reduced vavefield u(z, 0) is a solution of the Helmboltz equation

2
V u+ u -68(- 6(y - ) 6(z) (2)

v

In this equation, Vs is the Laplace operator and 6 is the Dirac delta

function. This equation is to hold for all (z.yz). It is further assumed

that

- - (1 + a) z ) 0, a G(Xy.z), c - C(z) I
a a

V C (3)

1 1

-- a (00

The function c(s) is the known continuous reference velocity and

a(zys%) is the unknown perturbation to be determined from observations on

the upper surface.

We introduce u. the solution of the unperturbed lelmolts equation

-S.



V +- =-(- ) 6(y - nq) 6(z) (4)

Ic

a

The function u is often referred to as the inaident wave.0 Then we

may write

u- M U + Us  1 (52)

V s + s  ua + (9b)

a As +---S 1 SO C

Let us suppose that a is small. neuristically, sizes the

,source term -(es/cs)as in equatio (Sb) is 0(u). we expect that the

solution us is as well. Thus as a first approximation. we may neglect the

product gug on the right side as being quadratic in a sad boe* of lower

order than the product aul. Consequently. the linearised equation for uS is

V +U

We shall ao write down the Green's funotio represeatatiom for the

solatica us evaluated beak at the source points this is the beekscatter

respoose whiek is samed to be the observed data. We remark that, from

(2) the Gree's fustios is Just ul itself. ad the rpreseatatie for us

-4.-



is

U8(-1j-O10) -w0 Jax Jdy Jdz c a,(z) uI(x'y'zjw,,Ou . (7)

80 80

c (z)

In this equation, we have used the fact that a is nonzero for z ( 0 to

Integrate only over positive z values. Also, we have exhibited both sets of

spatial arguments of u1 to emphasize its dependence upon both observation

and integration coordinates. This is the integral equation for at it is the

first term in the Born series for uS. We propose to solve this integral

equation in the high frequency regime.

-10-



S. LUIS OFI tBDURN& DUAOO PM hLPS&

An exact analytical inversion of Eq. (7) for a is not generally

available unless c is constant. Thus, we must content our~selves with an

approximate solution which retains features of Interest of the true velocity

profile. As discussed in the introduction, we shall develop a high

frequency solution for the reflectivity function under the assumption of a

piecewise constant a.

We envision an inversion algorithm which, for output l(xa,z), will be

in the form of an integration over a sot of traces whose transverse limits

define some bounded interval about the transverse coordinate of the output

or observation point - a Kirchhoff integral. Toward this end. we shall be

content to replace ul in (7) with a high frequency bandlimited approximation

of that function for which the transverse offset is bounded. This

approximation is the downward propogating 1KB or geometrical optics

approximate solution.

In Appendix A we derive such a solution as a Fourier integral. The

result is

do do sa ep (ig*(;I + L£) *e)

-Wi ZseP 010



In this equation, we have introduced the following notation:

af1 tua 1(z..aisi) dz *(9

2
5ZPU M IA* A- L + P:

c (z)

Te do not concern ourselves here with the values of Lk for which the

square root is zero or imaginary. The former case corresponds to rays at

their turning points the latter case corresponds to evanescent waves. We

justify the first of these by the observation that. in our inversion

formula, we shiall artificially limit the ran$e of transverse variables to

preclude the turned rays, thus limiting the amount of dip which can be

Imaged to vertical, at most. We justify the latter by noting that, in faet,

a Is the Pourier inversion of Its spatial transform over real wave vectors.

Dy using this representation for 6][ in (9). we obtain the following

approximate integral equation for a:



u( P.O jw) - -- dx dy dz 6

4(2) 4  ( J O )

010JdI dpL2 exp(li'(z- )+ ipz.su)) (0

S(Z.ui") it (O FI")

I dA d ezp(ih'(l - L) + iO(sim ))

In this equation, we have omitted limits of integration except for the lower

limit in z. V. take the point of view that the limits of integration in all

integrals is the range of values that allows the square roots in the

integrand to remain real.

Eq. (10) is the integral equation which we shall invert in the nezt

section. We note that Eq. (10) is a 'high frequencyS approximation to aq.

(7), which is itself a mall a' approximation to the exact expression for

. also note that we shall invert in Eq. (10) only in an

asyptotic sense. The validity of our cascade of approximations will be

demnstrated by the numieal examples.

-1I-
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4. ASEWOTIC INYIK WI TRAL BREIMTON

We shall now describe the (asymptotic) inversion of the integral

equation (10). To begin, we introduce the spatial Fourier transform of uS

with respect to defined by

110,10) Jdc dA uS(,0sOw) ozp[-21- ) , k - (k.k ) (11)

Bv takin8 this Fourier transform in (10) we obtain the following equation:

35 (hOO..) = fdx dz

Jdg dp zp{i~l + i i(zio))
* (12)

J I d.%, *zp(i&al + 104,1949))
JJo,,-48(2k + I + a) •

Is this result, we have used the fact that



dj exp{-ik. - (20' 6(k)

The delta funetion in (12) sow allows us to calculate the integral in IL.

(We could as easily use it to calculate the integral in .) The result is

Wg~e0 &) J d y L d X doi doi o zp(-21k-z)169s 14lz t I I

(13)

ezp(i[j(zg,*) + #(x.2k + it*)))

41 (.(glwU ) P (O.Es") p (2,2 + use) ) (,2k gUli)

We shall calculate the p integral by the method of stationary phase

(Bleistein. 19841. The large parameter in this integral is again the high

frequency, although that is not apparent in the given representation. Xt

would become apparent it we were to scale g and I by 1.1 and soale the depth

by the depth to the first reflector. Then we would find the dimensionles

depth to the first reflector, measured in wave lengths, emerging as a scale

on the phase of the p integration and this would be the dimenaionless large

parameter. We do not do this, but proeood formally to use the method of

stationary phase directly on the intogl (18). This is carried out in

Appendix D. The result is

1 -.i -



I|

JO dz V(k.z) ezp ( 2io(z.kw)

U-(k.Osm) (14)S~k' O; ) =T'6 €(-) P3(z.ksw) p ,(O.ksw) a(z.ksw)

In this equation,

11/2

Sdz' d' (15)
AS("11) c (W) P'1k)

0 0

When c(z) is replaced by a constant, the exponent in the integrand in

(14) is simply iksz0 with

40 a

The integrand also simplifies significantly in this case. One then

reonizes (14) as an equation for the Fourier transform with respect to a

of S. The inversion of this transform to yield a is thea straightforward.

Awareness of this faet suggest* an inversion whieh, at least asymptotieally.

has the ses offset When e varies With depth. Thas, we define

- 'I. -



16i d k do. VS3(k.Os) *xp[-2i0(tr.k ) + 2ik-4) (1I
=-r . (16)

w J,,,(t.k,") san -

We look upon w as the result of applying an integral operator to the

(Fourier transformed) data in (14). By applying the same operator to the

right side of (14), we find that

- dz Jdy Jdz Jdk1 J ,J kz)&(s.-m - d Q-( )"-12 d, dh) P (f.t.ko)

( 17 )

cg(x~z) expf21[#(z,k9*) - (t,]jov)] + 21k.(I )

p,(z,__s,,) p,'(O,ksw) er(z,k,,, -.

For the ease of constant a, the integrations on the right side can be

carried out explicitly to yield the result

( -.) o an(Lt')/t a(I.t) - " ,(t io . (18)

Thus at least for constant c, we see that the multifold integration on the

data represented by w is in fact a multiple of so that is, (16) and (18)

provide a solution for a.

Out objotive ao is to carry out the intogrations is (17) for the ease

of variable e. Again, we do so by using the mthod of stationary phaso.

- 1? -



this time in the four variables k and S. The remaining integrals in w and z

then become straightforward. This analysis is carried out in Appendix C.

The result is

c~)c() dz~t

0

which provides the solution for a:

*( ~ r) c.p- Oj J0c(z) dz (20)

In order to write the solution for a in terms of the data observed at

the upper surface, we uwe this result and the definition of w in (16) along

with the definition of V in (11) and the definition of the time transform

which placed us in frequency domain to begin with. The result is

16i rraz)d
o d). dz *d d d dt

e( ~ X - v (t) c(0) Jdi j z0

(21)

U('-,O~t) ezp(li~jh(L - 1)- aga a F(Z.kW) dii + Lot)

agn PS

ass a IS-tk



In this equation. we have used the notation US to denote the upward

scattered field in the time domain.

As mentioned in the introduction, we do not process the data to yield a

itself, but to produce the reflectivity function or normal derivative of a.

at each of the interfaces between the layers of constant a. The theory

developed in Cohen and Bleiatein [1979b] shows that we can process. for

ba/On by multiplying the integrand by -21/c(t)o we can obtain A if,

insteadwe multiply by -il/2c(t) before inverting. This is also discussed

in BCH and in Blistein [1984]. Thus, we introduce the reflectivity

function f(jt), obtained by multiplying the integrand in (21) by this

factor. That is,

8 c(z) ds

a 5(r) GO)
(22)

U(z.O0,t) ezp{2i[].(2 - a) - san a 0 ,(zwklw) dr] + it)

In practice, an &real array of data, as is required for this formula,

is not usually available, only a line of data at the upper surface is

available, say in the direction of the z axis of our formulation. In order

to treat this type of data, it Is assumed that there is no variation La

velocity in the orthobonal horizontal direction, namely the y direction. In

that case, the date itself met be y-independent. This allows us to oany

out the integrations in y and ks. The former of these yields * (ks) and

the letter integration then yields a value of x while also evaluating the

- q.



iategrasd at ks W 0. Consequently. we may replace k, by k in the integrand

sad write down the following result for the refleotivity fuotion in the

&se of y independence:

SS -o ) a do ,i dt

a *(t) 6(0) 10de d

(23)

Us(.O.t) ozp(21[k(C - x) - ss5n ,(z,ksw) dz + ioti

Sin op.* (i.hkl)

Although 0 is assumed only to have two dimensional variability in this

result, the wave field has three dimensional spreading properties. Thus.

this is the formula for the two and one-half dimensional ease. We remark

that a fully two dimensional formalism (governed by a two dimensional wave

equation) would not properly aceount for the 5onoetrioal spreadinsg of a

three dimensional enviroment as this two and one-half dimensional result

does.

For the ease of constant . we ean omparo this formula to the result

is Coes snd Bloisteis [lPh7]. This comparison is sufficiently compliosted

to earry out that we do so is Appendix D. To leading order asymptotically,

they do, indeed, agree.

Also fot soastast o, (2) has the form of a k-f miratiOn Lategral. Is

(uto wbn eemoared to Stolt lP781, equatiou (50). we find that we mast

-20 -



i) interpret Stolt's as tU5(xOt) and (ii) integrate by parts with

respect to w as is done in Appendix D of this paper. Then the integrals are

the same to leading order asymptotically for large * up to a multiplicative

constant. Since the Stolt k-f formula is migrating the field and we are

producing 0, this difference of a multiplier causes no difficulty. Ewever,

except for such constant multipliers, it is necessary that the integral

processing agree, at least to leading order in u, because both methods

produce an image of the interfaces between layers. Only the interpretation

of the intensity of the imaging function differs in the two methods.

-21-
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S.Atvz iaw II A Uin DWI*LE_ ~

The formula (23) is not easily implemented on thecomputer.

Furthermore, in that formula, we have not fully exploited the possible

simplifications available under the assumption of kigh frequency." To

achieve this end, there is still one integration which san be carried out

aseyptotically, namely, the integration in k, the transverse wave number.

This calculation is carried out in Appendix 2. The result of that

calculation is

-,-.32 gop(s) dz -.

I d exp(-2i rn(p,) + i(sgnu 14) (24)

8Us(xO.t) oxp(iot)dt 9

di T(tp) - =______- __

(25)r 11/2
-a(S da 02~s (o)

I 0 pa 32 a 5Z
S(':"-p)"" . .,, .."1

In these equations, the interaud is stated parametrically with parameter

p. Thie is a dimensionless ray parameter whieh denotes the sim of tUe

necrgemOs sale with respest to the vertlcal ot a reflected ray. (This
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usage is a departure from the usage in the x-p method where this parameter

is divided by c(O) but is also denoted by p.) For each choice of Ix-

and r, we must determine the value of p from the first equation in (25).

Given p, the values of T(rp) and S(tp) are then determined, as well as the

explicit square root appearing in the integrand. The choice of v determines

a 'time" at which the processed time logs (CDP stacked traces) are to be

evaluated. 'Processed' means Fourier transformed in time, multiplied by a

function of w and inverse Fourier transformed. The range of integration in

space is restricted to those values of a for which the square roots of the

integrand remain real and nonzero and the travel time T remaining less than

the maximum time on the set of traces.

Equations (24) and (25) are to be implemented on the computer. In

anticipation of this, we have written our result in terms of n(z), the index

of refraction, which is a number varying typically between .25 and 4, rather

than in terms of the inverse velocity or slowness, which is three orders of

magnitude smaller, with similar estimates true for the corresponding

parameter p. The computer implementation proceeds as follows:

(i) Calculate the Fourier time transform of each trace.

(ii) Multiply by a function of the frequency variable, perform

filtering as required and take the inverse Fourier transform.

This inverse transform is now given on a unifomm grid in time.

(iii) Por fixed output depth t, develop a table of values of p as a

fmetiom of I2 - 41 (transverse offset between output point (C.)

-28



and receiver location (z.0)) for the prescribed reference velocity

a(&). Wo use a table here because the sam choices of these

variables arise repeatedly in carrying out the spatial integration

for different output points at the #iven depths.

(iv) With the p values determined, develop tables of the other

functions of p. namely v and 8 in Eq. (25), as well.

(v) Now for fixed (Q4), calculate the spatial integral as a discrete

am over the locations z of the traces, subject to the limits of

ummation noted above. Typically, the value of v at a given

choice of z, 4 and r will not be available in the table of

processed data determined in (ii). Therefore, use an

interpolation scheme to estimate the value of the processed data

at v in terms of the processed data at the grid points of the time

variable.

The integration in a is to be carried out over the available bandwidth

of the data. The Fourier transform should not simply be truncated at the

endpoints of the bandwidth, but a smoothing filter should be applied to

avoid ringing of the output due to a discontinuous filter.

The spatial integration must also be further constrained by sampling

rate considerations associated with the discreteness of data in the spatial

dmain. If this is not done, spatial sliasing will occur and will be

apparent in the output. The requirement whisk we Impose is that the

transverse cemponent of the wave vester in the phase of the a integral must

- 24 -
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be bounded by the tranverse spatial Nyquist frequency associated with the

sampling rate or spacing of the traces, as discussed next.

Let us denote the trace separation in the transverse by Ax. The

transverse wave vector can be determined from the phase 2w: by calculating

the partial derivative of that function with respect to z. This derivative

is equal to the quotient of derivatives of 2w: and 1- with r and

Ix - defined in (25) - with respect to p at fixed . That is.

-2w p

To introduce the frequency in Is. f * /2x. and require that the transverse

wave number satisfy our Nyquist. bound eves for the maximum frequency, say

f *Thou

whiish leas to the emditims

as -
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P C(0) (28)4 f+Ax

This is the additional constraint an p which, in turn, imposes as additional

constraint on the limits of integration (sumnation) in z.

The next question which &rises is how to estimate the Ojmap" in a at a3

interface in terms of the reflootivity, F. This is discussed in Cohes sad

Bleisteis [1979b] and Bleistein [1984] for the case of a *box* filter. Let

as def ine As as the increment in a at such an interface and P as the peak

value of 0 at an interface location on an output trace. The theory then

predicts that

Au = P • (z)
A 4" (f- f_ "(29)

In this equation, f_ is the minimum frequency.

Por a more general filter, we must replace the difference of

frequencies by the area under the filter functions, that is, if A denotes

the area under the filter, then

O(s) (3O)As " P T "(O



Finally, there is some post-processing possible to compensate partially

for the linearity of the underlying theory. This work was reported in Eagin

ad Cohe* [19641. We quote hare the results of one important post-process

sad refer the reader to that paper for further detail.

In order to obtain an estimate of the velocity increment acoos as

interf ace, one uses the linearized estimate deduced from (1),

Ac r-1/2 c(z) As *(1
C st

Nere, Ac a demotes the estimate obtained numerically. egis and Cohen then

suggest as an improved estimate of the velocity increment

A .24(s) Ac e (2
Ac z - ADsot (

We remark that all such post-proessaing refinements tre only worthwhile

if the original data is such that there is reason to believe that at least

relative true amplitude was preserved. When this is aot the ease, such

poet-processing is umnecessary. Implementation of (24) sad (I5) still may

be emloyed to yield a structural invewsion or misration of the time l08s.
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We shall now discuss CU time for the implementatiom of the five steps

listed is the previous section. Lot us detine the following:

N The amber of poiats is the trasverse at which the output is to be

calculated.

Nr The mumber of points in depth at which the output is to be calculated.

N The number of tine points on each input trace.

N The mber of traces.
x

It should be noted here that, is practice, Nt is mailer than N . The

reason for this is that the sampling rate determines a Nyquist frequemney

which is usually larger than the nazimu frequecy of usable data. Thus.

there Is a limit to the resolution of the output based upon this mazimum

usable frequemy sad at cm the sampling rate.

Ia out research, we have ocluded that the density of the output need

be so greater than to produce four points *a the main lobe of the

baadlimited delta fmetions whieb are being depicted. In Appendix F. this

analysis is discussed. Wbom those results ato Implemented with ambors

typical of geophysical exploratiom data, we conelude that a typical ves

fer th ratio N~dN, ..

4
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Implementation of each atep of the previous section is estimated as

follows:

stop Mi 0O(N xN Tlog aN T) to compute the Fourier transforms.

step (ii) O(N N T) to multiply all of the transforms by a function of

frequency and then as in Stop Mi to invert the Fourier

transform.

Step (iii) O(N N )to develop the table of p values.

Stop (iv) As in Step (iii).

step Cv) O(N N NO) to calculate the final integral for the output.
4

In Step Wv, we use N' to connote that, in fact, the aperture over whieh the

integral is to be calculated is a fraction of the total aumber of traces-

on average, perhaps one-half.

Steps (iii) and (iv) are cmputations vhish need sot be perfomned in

the ease of constant c. We mote that the 0 estimate for each of these

steps can be sigaifieastly smaller than or eupirable to thke stimte for

Step Wv. Mei is so beeauae N xmight be as large as N and N may be a

small fraeties of N * r. at mest. equal to N

20 -



7. IR i8N=

We use three numerical examples both to illustrate the preceding theory

and to demonstrate the differences between it and other migration methods.

The first example is relatively simples it will be used to provide a

eaparison of imaging methods. The second and third are more complicated

and realistic.

Fig. 2(s) shows a synthetic time sectio3 from a dipping planar structure

in a region whore the velocity varies linearly with depthD the dip agle is

60 degrees and the velocity function is

c(z) - (5000 + 4z) ft/sec. (33)

The trace spacil is 50 ft. With e(z) taken as the reference velocity, the

reconstruction as described in Section 5 is shown in Fig. 2(b). The tine

section has been correctly msigrateds the apparent loss of high frequency

content in the migration is duo to imposing the constraint (28). For

comparison, we show in Fig. 2(e) the results of a Kirohhoff migration of the

same time section. Straight ray paths were assumed for this migration, and

the traveltimes for diffraction curves were computed by using the rma

velocity (converted ftro a function of time to a function of depth), as

discussed by Schneider (1978). From this extreme example, which features a

steeply dipping event and large background velocity variations, one can

easily see the advantages of computing traveltimes along the curved ray

paths defined implicitly in Sq. (25). The Kirchhoff output is incorrectly

placed and the planar reflector is depicted as a curved surface.

Additionslly, a k-f migration was perfomed on this data after "etretohings

-so -



the time axis [Stolt, 19791. This migration was totally unsuccessful in

imaging the reflector. This is because, after the time axis was stretched, 

the reflection event on the resulting time section had an apparent dip

greater than 45 degrees, making the migration equation

sia(migrated dip) = tanlapparent dip) (34)

meaningless.

The second example (Fig. 3) shows a salt dome in a medium whose

layering is otherwise nearly horizontal. Because the objective is to image

the flanks of the salt dome and not its interior, migration with a reference

velocity which varies with depth only is appropriate. FIB. 3(a) shows the

model and Fig. 3(b) shows a finite-difference time section from the model.

Part of the salt dome is overhuang: its dip exceeds 90 degrees. The model

velocity varies from 6000 ft/sec at the top of the model to 16000 ft/sec at

the bottoms it is piecowise constant. The trace spacing is 100 ft. The

reconstruction in Fig. 3(c) shows the correct imaging of dips up to, but not

beyond, vertical. For a comparison with a reverse-time finite difference

migration (Whitmore 19781, see Fig. 3(d) from Whitmore [19831. The finite

difference migration correctly images dips exceeding vertical, but its

implementation is considerably moro time-consuming than the approach studied

here.
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The third example also consists of a salt done in a edium whose

layering is otherwise nearly horizontal. The model is shown in Fig. 4(a),

along with selected ray paths from reflecting interfaces to the upper

surface. The model velocity varies from 5250 ft/sec at the top of the model

to 14100 ft/sec at the bottom, and the trace spacing is 25 ft. We note that

the ray paths are pieoewise straight line segments, indicating that the

model consists of piecewise constant-velocity layers. contrary to out

specification of a continuous. piecewise linear. depth dependent velocity

layering. Nevertheless. the niration (Fig. 4(b)) was successful. The most

notable errors are:

(1) The inaccurate mapping of the interface directly below the salt done.

This occurred because the acoustic velocity of the salt is higher than

that of the sediments, leading to reduced traveltimes for reflection

events whose rays have travelled large distances through the salt. The

one-dimensional reference velocity failed to account for this fact.

(2) The appearance of diffraction miles on the migrated section. These

are due to the artificial truncation of reflected energy on the time

section, that is, the time section does not contain diffraction

effects. This is, therefore, a limitation of the synthetic time data

and not of the migration. In fact, any migration method will correctly

interpret those truncated events as nearly circular reflector

continuations. Finally, Fig. 4(d) shows the effects of modifying the

anti-spatial-aliasing constraint (28). With the 4 in the denominator

replaced by 8, spatial aliaslng is further limited along with the

ability to image the most steeply-dipping events (which appear on Fig.

4(a) as those most likely to be aliased).

- 2 -
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Computer run times for these and other experiments indicate that the

speed of this algorithm Is about the same as that of a comparably coded

(FORTRAN) k-f migration routine.

,I.
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a. C88uinm888

Wo have exteaded the multidiaensional Bova inversios formalism sad

algorithm to the ease where the know& reference velocity, from which

perturbations are to be computed, are a fuactioa of depth. The analytioal

resalt has made us* of a linearization (small perturbations from the

reference velocity) and a high frequeacy assumptioa (that seismic data are

fretqueney baadltmited, with eyes the lowest available frequecies onsidered

to be Ohigwh for the problem at hand). The reductioa to an implemoatable

algorithm has made further use of the high frequecay assumption, resulting

ia aa efficiout structural inversion method.

To wish to thauk Daa Whitmore for providiag the finite-diffcrenos

synthetic data, sad Amoco Produetiom Compsay for permission to publish those

results.

This reosearh project was initiated while the first author was a

visitor at the mooe Research Coster ia Tulsa during the mouths of February

sad Marsh. lo8. This author wishes to opress his deep approiatiatioa to

moso. fo rovidiag a frieadly sad stimulating environmeat is which to work.

Thore is me question in my mind that the quality of that eaviromeat

coatributed siSSifiosatly to the sueooss of this project.

I
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APPMUII A: ASTWIMC DOISDI N OLUTIN

The purpose of this appendix is to derive the asymptotic downgoin8

solution. (8). to equation (5). We begin by introducing the spatial Fourier

transform of the solution, defined by

,u(xuz.w) exp(-i-j) di dy, M (p1, L) (A-i)

By applying this Fourier transform to equation (5), we obtain the following

ordinary differential equation bor the function 1:

2
d I + U = -6(z) exp(-i!- ) ,dz 2

dzS (A-2)

2 -p2s(z.ale) . .. .- i *s = -i F I' <--
cI(z) 2 c' 2(s)

We have only defined p for the ranges of its variables which make it rnal,

and we shall only concern outsolves with the asymptotic solution in that

range as well.

Asymptotic theory for ordinary differential equations - toe for

example Coddimgton and Levinson (19551 -- indicates that two linearly

independent solutions to the homogeneous form of (A2) are given

asymptotiselly by

- Sm-



a ezp(+iOa(ZIsw)

-+ ~ . , *= sgn &e p , ) dze (A-3)

In this equation. a are constants. The solution V is outgoing for z -4-

and the solution U is outgoing for z --. Since (5) is homogeneous for z

nonzero, we conclude that

+, +a > 0 
(A-4)

4

with only the constants a+ to be determined.-

In order to determine thse constants, we must impose two conditions at

z 0 0, those conditions characterizing the distributional nature of the

source. The conditions are that the function itself must be continuous and

the first derivative of the function must have a *Jump' equal to the

integral of the right side on an interval containing the origin in z. These

two equations are

+0- _ -0a

a + a
- ezp-i.I"I, (A-S)

after a division of commos factors. The au of those equations yields a
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which is the only oonstant of interest in our further disoussion. Fourier

inversion then yields equstion (8).



A UI 3: ASIWrZC W *UlE W (18)

The purpose of this appeadix is to &*five the result (14), wkih is
I

the asymptotic expassios of the g-integial is (13). We skall besis be

remindiag the reader of the basis multi-dimessiosal statioaary phase

formula. For a derivation, see Bleistein [19841, for example.

Lot us suppose that I(M) is a multi-fold integral of the form

1(0) - JD f() epi7 f()% dk "' n (31 )

Is this equation. D denotes some domain is h - spase. The integral (13) is

of this fom in the variables k with a - 2. In a subsequent appeadix, we

shall have eed of this result witk a - 4. Our intention is to state the

formula for the leading tern of the asymptotie expassion of this integral

for 'large' values of the parameter, X. As explained is tke text, we have

not recast the istegral is a fom is Vhiek L is explicit. Therefore, we

shall apply the formula below Vith & - 1.

Lot us suppose that, is D, k is the only gjaj stationer poiM.-0

that is.

vVIho) .2_.(s.t

but te matrix with elements

-8s9-



lj 9 OkI v ,J . (B-3)

is nonsingular. Then, the leading torn of the asymptotic expansion of the

integral (B-1) is t

n/2~ f(k)
10) ' L .xp(ixlk o) + iwssa i )/4] . (-4)

In this equation, $In fij is the signature of the matrix I . The signature

is the number of positive eigeavalues minus the number of negative I

igenvaluos of the matriz. If the domain D has more stationary points, one

simply adds up the contributions from each of thou.

Lot to now consider the integral (13) and set

9(g) - agn wU[ Ste) + P(a,2k + gro)) , (B-5)

with 0 defined by (9). Differentiation with respeot to j yields the

following results:

40



-| -snw a + dz' (D-6)

-aga jpj J plz'Mi . .l',k+ sw)J

V( + 2k + )(2k + ) I

+ P~I~+ d Ii z IpS lz',Su) ii(z,2k + (zJ

In these equations, both indices take on the values 1 and 2 and St denotes

the Kroneckor delta function.

of the phase at the sttionary point povides the phase in the ntegral in

(14). Furthermore,

ezp (- iwls gn a)/1 2 - 1(5 )

and arrive at (14).
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AMUSU C: ASIIWIWIC DUY5IOGI ICM ALP

In this appendix, we shall derive the result (19) from the integral

(17). To do this, we shall first calculate the leading term of the

asymptotic expansion of the fourfold integral in the variables k and z. In 1
order to implement the stationary phase formula (B-4), we think of the

latter two variables &a being k and k .
a 4

Lot us define the phase to be analyzed to be

2(stn ) f (z,kso.) dz' + 2k-( - (C-1)

We take the derivative of this phase function:

-2 (sgan ) da' + 2(t1 - zi), 1 1,2Ok i JPs

(C-2)

.
o z i " 2 k , °  i " 1 2 .

i

The conditione that the phase be stationary yield the solution

-"4-



k i  0. O° i p 1 i 1,2 .(C-3)

Ve must now calculate the matrix of second derivatives at the

stationary point. This is greatly facilitated by employing (C-3) in the

calculation process to disregard contributions which are zero at the

stationary point. We find that at the stationary point,

- WC(Z) dz'

(C-4)

taa Is. fai 4 2

with all other terms being zero. For this matrix, we find that

dot -ij 16, saa j - 0 (C-S)

and

-2, . (C-6)

4.
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Te now use the stationary phase formula (B-4) and find that

w(c.t) o(t)c(O) dz d e '/(z') (C-7)

1.0 1C:z) r- c(zl) dz'

The w integration can now be carried out to yield

QO agaez) 6 Wtdz'/clz')]

W(t,, - c(t) oO) (d. (C-8)

c(z) rO ©(z') dr'

We now apply to (CS) the rule.

S(f(z)) a(z) dz - )l (C-9)

with being the only (simple) zero of f(z) in the domain of intesration.

This yields the result (19).

44.



A*MU1[ D: COAIEA VMlE AI L= 1 Mj

In this appendix we shall discuss the comparison of (23) with the

corresponding result from Cohen and Bleistein 11979a]. In the latter. the

formula for u, in the two and one-half dimensional case, is stated in

equations (9) and (10). We quote that result with changes in notation to

correspond to the notation here: we must interchange the roles of z, q and

z, . The formula for u then becomes

, 81c

= -A -- dz dki ks dkj Jd dt

(D-1)

(- t) U(xO.t) ezp(2i[k (Q - x) - + icM} $

In this equation,

a - en ks Jk+ . (D-2)

We shall now simplify the time domain integrals. To bagin, lot as

define
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I JdT Jodtv(v - t) US(XO~t) eXP(iwd . (D-3)

In this integral, we wish to interchange the order of integration. In doing

so, we take the point of view that w has a positive imaginary part. Indeed.

there is justification for this. The original problem was "causal;" that

is. the experiments were carried out starting from some finite time. Thus,

the Fourier transform to frequency domain is originally defined and analytic

in some upper half w-plane. Before analytically continuing the transform

down to the real axis, the interchange is justified. After carrying out the

interchange, we obtained

I M f Jdt V U(x.0,t) ft d:c(v - t0 exp(iwd . (D-4)

We now calculate the v integral by integrating by parts and keeping

the leading order term in ta for large Jul. The result is

fiA.Jt t U5(1.O.t) exp(iwtJ *(D-S)

whieh we ass also write as

-4'-



foo

S=2.-- dt U (x0O,t) exp(iwt) .(D-6).'

We substitute this result into (D-l) and also introduce the change of

variable of integration from k to w via the equation*

ks sgnw 0 (-7

and obtain

( ) . dx dk exp(21 [k (Q x) kt])

(D-8)

US(xO~t) exp(iot) dt

The theory developed in Cohen and Bleistein 11979a] indicates that we

obtain the reflectivity function by multiplying the integrand by 2i/c.

which yields the following result:

- @m .' 161 dx j dk, I dot ozpu(2 1 ( z ) -~ ]

(D-9)

SUs(I,O~t).exputi t

As interation by parts in e now yields the result
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L(.) 21 fdx J s dk exp(21[kl(t x) - k3t)I

(D-10)

J dt Us(zOt) exp(ietldt

When (23) is specialized to the case of constant c. the result is exactly

the same as (D-10) when one makes the identification

P. sgn a = k s . (1)

484
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MSIM 5: ASWIOIC PiaMIiN M IM OLOTION PON A

We shall describe here the asymptotic expansion by the method of

stationary phase of the integral with respect to k in (23). We begirw by

rewriting that inegral as

I - -:(P€(O) JlldJ dx dt US(x.O.t)

dk. exp(21# + imt)

P S (z~ksw)

In this equation.

f-k( - x) - *$ a (z~ko) dz. (E-2)

To calculate this integral by the method of stationary phase. we need the

first and second derivatives of the phase function. They are given by

- 4 t -
i
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-- ="(E - 4 )8k c S(z)p. (z,kiw)

0

The condition that the phase be stationary, that is, that 89/Sk 0, is

x ksgn w Pzko)(E-5)

1'0

We act

k - Sln (.-z (E-6)

and then (E-5) is Just the ray equation, which is the first equation in

(25). Furthermore, at the stationary point,

A(s .k, ) - _ - , = uv~p, )

('-7)

dA. C(O) *2 S(tp) sgn e
dk'

Substitution of these values and application of the stationary phase formula

to (E-1) yields the result, (24), (25).

,so-
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API I1 F: SAIU IML O W n sm IN DOM

We shall discuss here the question of the sampling rate in depth of the

output of a seismic inversion algorithm. These considerations are not

peculiar to inversionj they apply to any similar Imaging technique.

Lot us consider the final step of the integral process to image a

reflector. For simplicity we deal with the case of a horizontal reflector

in one spatial dimension. Then, the last integral to be performed is of the

for=

I(z) - fBexp(4wifz/c) df . (F-1)

In this equation, the band B over which the integral is to be calculated is

a symmetric pair of intervals, (-f+, -f_), (f, f +). Calculating this

integral explicitly and using a trigonometric identity for the difference of

sines of two angles yields the result

a cos[2(f+ + f_)z/c sin[2w(f+ - f_)/lo-

The zeroes of this faction nearest to the origin occur when the cosine

factor in this equation is zero or when the argument of the cosine factor is

w/2. The distance between these two zeroes is determined by sotting the

arSmemst of the cosise equal to w.

-S1-



On empirical grounds, we require that the sampling rate in depth be

such that there are four sample points in this interval. Therefore, if Az

is the ample interval,

2w 4 f-)4&Az

s (F-3)

or,

Az 8- + + 1- F4

Lot us define the maximm depth to be Z and the maximum time

corresponding to that depth, to be T. Then, neglecting the practical

aspects of processing to the maximum depth, we setI

N a - - -4At(f+f-) N (F-5)

For a sample rate of 4 ails and a useful frequency tangei of 5-30 3:, we

obtain from (FO) the estimates N IN t .56.
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Figure 1. The bandlimited singular function of a surface.

Figure 2(a). Synthetic time section: dipping planar reflector in a medium
where the velocity increases linearly with depth. Dip angle is 60 degrees#
velocity is (5000 + 4s) ft/sec.

Figure 2(b). Depth section reconstructed via the Born procedure. The
reflector has been properly located.

Figure 2(c). Depth section reconstructed via Klirehhoff migration using ms
velocities. Because of errors in computing traveltimes for diffraction
curves, the result is a severe overmiSration.

Figure 3(a). Salt dome model.

Figure 3(b). Synthetic time section.

Figure 3(c). Reconstructed depth section. All dips up to 90 degrees have
been properly migrated.

Figure 3(d) Output of W itmoreos reverse-time finite difference migration.

(With the permission of the author.)

Figure 4(a). Salt dome model with ray paths from one reflecting horizon.

Figure 4(b). Synthetic time section.

Figure 4(c). Reconstructed depth section.

Figure 4(d). Reconstructed depth section, the anti-aliasing constraint (28)
has been modified.
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The purpose of this paper is to describe as extension of the
multidimenmioal Born inversion techiaque [Cohen and Bleistei, 1979sJ for

acoustic waves. In that earlier work, a perturbation in reference
soundspeed was determined by asuming that the reference or background speed
was constant. In this extension, we allow the refere&ee speed to be a
function of the depth variable. a, but still require that it be independent
of the transverse variables. The output of this method is a hih frequency
bandlimitod reflectivity fustion of the subsurface. The' reflotivity
function is an array of baadlinited singular fustions scaled by the normal
reflection strength. Each singular fustion is a Dirac delta factios of a
scalar argument which measures distance normal to.a reflectiag interface.
Thus, the reflectivity functios is an indicator map of subsurface reflectors
which Is equivalent to the map produced by migration. In addition to the
assumption of small perturbation, the method reqries the assumption that
the reflection data reside is the high frequency regime4 I a well-defised

The method is based on the derivation of as integral equation for the
perturbatiom is souadspeed from a known reference speed. When the reference
speed is coastant, the integral equation admits an analytic solution as
mltifold integral of the reflection data.. Forther. ktih.- frequeao7
asymptotic analysis simplifies this integral considerably and leads to
eztremely efficient numerical algorithm for computing the relfeativit
fuaticn. In a paper by Bleisteia, Cohem sad Magia [1984], the dovelopmet
of a computer code to implement this constaut referenee speed solution i
described.

For a depth dependent referene speed, (s). we cas so loanger inver
the integral equation ezatly. Nowever. we cas write down am asymptoti
high freqeacy approzimation for the kermel of the itogal equation sad a
asymptotic solution for the perturbation. The cemputer implementation o
this result is desigsed a1ong the same lines as the sods for the. coaste
bsekround ease. Ia tests of processing time, we fimd that. at worst, th
total processing time for this algorithm with depth depeadeat baokgro
soudispeod is about the same as for a eomparably programmed k-f alSorit
with eonstant background. By worst we mes that we choose the aspect rati
- the number of traces divided by the aumbet of poists po trae - to.b
optimal for the k-f algorithm. We present ezamples whish demetrst the
method implemeated as a nigratios teehnique sad camps. with tho appliesti
of alternative migratim algorithms. The examples we ohose were sues
whisk the objeative is to image the flinks of a salt dame.


